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The dairy farmer problem

maximise: revenue from milk production less operating costs
by deciding: the number of cows to farm

the quantity of grass to feed
the quantity of supplement to feed
when to dry-off the herd

subject to: obtaining a high Body Condition Score at the end
of the season
uncertainty in grass growth
uncertainty in the milk price















What role can stochastic programming play?

I The farmer made a sequence of “bad” decisions (in hindsight)
I They had too many cows to begin with
I They didn’t buy more feed when it was cheap
I They didn’t sell their cows while the price was high

I But they were also unlucky. It was the wettest spring in recent
memory.

I Given the information available at the time, did they make the
right decisions?

Is the last 30 years of experience a good heuristic for the next 30
years?



POWDER
The milk Production Optimizer incorporating Weather Dynamics
and Economic Risk

To learn more about this, come to my talk

Wednesday, October 31, 2018 @ 2:00 p.m. Room 274 Animal
Sciences Bldg.



Risk

Why care about risk?

If the tail matters more than the average.

I For a farmer, bad years mean cows starve or you go bankrupt
and lose your farm

I As for the question of whether the farmer made the right
decision last year, it depends on how the value risk.



Static Risk Measures

Definition
A risk measure F is a function that maps a random variable to a
real number.

Math
We restrict our attention to random variables with a finite sample
space Ω := {z1, z2, . . . , zK} equipped with a sigma algebra of all
subsets of Ω and respective (strictly positive) probabilities
{p1, p2, . . . , pK}.
We denote the random variable with the uppercase Z .
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Static Risk Measures

Definition
The Average Value-at-Risk at the β quantile (AV@R1−β) is:

AV@R1−β[Z ] = inf
ζ

{
ζ +

1

β

K∑
k=1

pk(zk − ζ)+

}
,

where (x)+ = max{0, x}. (Rockafellar and Uryasev 2002)

Note that when β = 1, AV@R1−β[Z ] = E[Z ], and
limβ→0AV@R1−β[Z ] = max[Z ].



Static Risk Measures

E[Z ]

AV@R1−β[Z ]

Area = β

max[Z ]
Z

p
d

f(
Z

)



Static Risk Measures

Definition
A coherent risk measure is a risk measure F that satisfies the
axioms of Artzner et al. 1999. For two discrete random variables
Z1 and Z2, each with drawn from a sample space with K elements,
the axioms are:

I Monotonicity: If Z1 ≤ Z2, then F[Z1] ≤ F[Z2].

I Sub-additivity: For Z1, Z2, then F[Z1 + Z2] ≤ F[Z1] + F[Z2].

I Positive homogeneity: If λ ≥ 0 then F[λZ ] = λF[Z ].

I Translation equivariance: If a ∈ R then F[Z + a] = F[Z ] + a.



Static Risk Measures

We can also define coherent risk measures in terms of risk sets.
That is, a coherent risk measure F has a dual representation that
can be viewed as taking the expectation of the random variable
with respect to the worst probability distribution within some set A
of possible distributions:

F[Z ] = sup
ξ∈A

E ξ[Z ] = sup
ξ∈A

K∑
k=1

ξkzk , (1)

where A is a convex subset of:

P =

{
ξ ∈ RK :

K∑
k=1

ξk = 1, ξ ≥ 0

}
.



Static Risk Measures

If A is a singleton, containing only the original probability
distribution, then the risk measure F is equivalent to the
expectation operator.
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Static Risk Measures

If A =
{
ξ ∈ P | ξk ≤ pk

β , k = 1, 2, . . . ,K
}

, then the risk measure

F is equivalent to AV@R1−β.
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Static Risk Measures

If A = P, then F is the Worst-case risk measure.
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Dynamic Risk Measures

Okay, so those are static risk measures. How do these translate to
the multistage case?

Let’s assume we have three stages, t = 1, 2, 3.

In stage t, the cost incurred is a random variable Zt that depends
on the realization of the noise terms ω1, ω2, . . ., ωt .

How do we take the risk of F[Z1,Z2,Z3]?



Dynamic Risk Measures

End-of-horizon risk measure
See, e.g., Pflug and Pichler 2016; Baucke, Downward, and Zakeri
2018

F[Z1,Z2,Z3] = F ω1,ω2,ω3 [Z1 + Z2 + Z3]
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Dynamic Risk Measures

Nested risk measure
See, e.g., Ruszczyński 2010; Philpott, de Matos, and Finardi 2013

F[Z1,Z2,Z3] = F ω1 [Z1 + F ω2|ω1
[Z2+F ω3|ω1,ω2

[Z3] ] ]
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Risk in SDDP

Recall our favourite dynamic programming recursion:

Vt(xt , ωt) = min
ut

Ct(xt , ut , ωt) + E
ωt+1∈Ωt+1

[Vt+1(xt+1, ωt+1)]

s.t. xt+1 = Tt(xt , ut , ωt)
ut ∈ Ut(xt , ωt),

where the decision-rule πt(xt , ωt) takes the value of ut in the
optimal solution.
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Risk in SDDP

Recall our favourite dynamic programming recursion:

Vt(x̄t , ωt) = min
ut

Ct(xt , ut , ωt) + θt+1

s.t. xt = x̄t , [λt ]
xt+1 = Tt(xt , ut , ωt)
ut ∈ Ut(xt , ωt)

θt+1 ≥ αk
t+1 + βkt+1

>
(xt+1 − x̄kt+1),

where the decision-rule πt(xt , ωt) takes the value of ut in the
optimal solution.
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Risk in SDDP

Recall
Given an original probability distribution {p1, p2, . . . , pK} and a
coherent risk measure F, there exists a changed probability
distribution {ξ1, ξ2, . . . , ξK} such that F[Z ] = Eξ[Z ].



Risk in SDDP

The meat of the matter. Consider the following (re-stated)
proposition from Philpott, de Matos, and Finardi 2013:

Proposition

Suppose for each ω ∈ Ω, that λ(x̄ , ω) is a subgradient of V (x , ω)
at x̄ . Then, given F[V (x̄ , ω)] = Eξ[V (x̄ , ω)], Eξ[λ(x̄ , ω)] is a
subgradient of F[V (x , ω)] at x̄ .
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Risk in SDDP

So what is this saying?

To obtain a cut for F ωt+1∈Ωt+1 [Vt+1(xt+1, ωt+1)]

I We can go and solve the t + 1 stage problems to obtain an
objective value θ̄ωt+1 and a dual vector λωt+1 for each
realization of ωt+1.

I Normally, we take the expectation of these to get the cut

θt+1 ≥ E[θ̄ωt+1 ] + E[λωt+1 ]>(xt+1 − x̄t+1)

I Instead, we compute ξ such that F[θ̄ωt+1 ] = Eξ[θ̄ωt+1 ] and
then take the risk-adjusted expectation to get the cut

θt+1 ≥ E ξ[θ̄ωt+1 ] + E ξ[λωt+1 ]>(xt+1 − x̄t+1)



SDDP.jl tutorial

Link
https://github.com/odow/talks/blob/master/2018/uw_

luedtke.ipynb

https://github.com/odow/talks/blob/master/2018/uw_luedtke.ipynb
https://github.com/odow/talks/blob/master/2018/uw_luedtke.ipynb


But Wait! Danger ahead!

Do these nested risk measures make sense?
Remember how the end-of-horizon risk measure made the most
sense:

F[X1,X2,X3] = F[X1 + X2 + X3]

But we actually used the nested risk measure:

F[X1,X2,X3] = F[X1 + F[X2 + F[X3 | X1,X2] |X1]]

What is the interpretation of a nested risk measure? This can lead
to perverse, counter-intuitive results!



POWDER
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