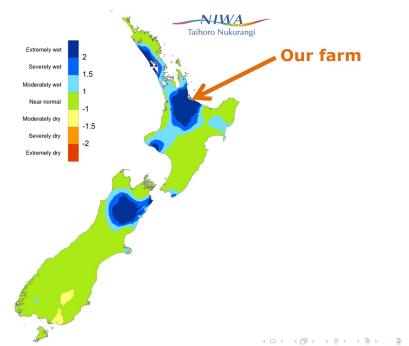
Uncertainty in agriculture new directions for stochastic optimisation

Oscar Dowson

Department of Engineering Science University of Auckland

June, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



In my opinion, all palm oil should be banned.

< □

SPI Drought Index for 9am 27/08/2017 to 9am 26/09/2017

A high milk price was forecast.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - After each year, they are back-paid an *end-of-season* milk price
 - We can forecast the end-of-season price during the year

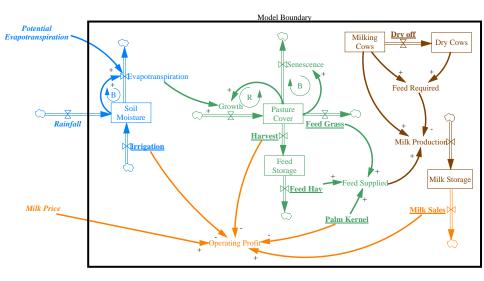
- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - After each year, they are back-paid an *end-of-season* milk price
 - We can forecast the end-of-season price during the year
 - But with high uncertainty

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - After each year, they are back-paid an *end-of-season* milk price
 - We can forecast the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,

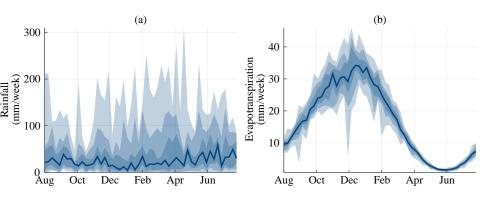
- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - We can forecast the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - After each year, they are back-paid an *end-of-season* milk price
 - We can forecast the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.
- But, a wet year had left paddocks damaged.

- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - We can *forecast* the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.
- But, a wet year had left paddocks damaged.
- 30 years of experience said: we can't have a bad Summer, Autumn, Winter, AND Spring

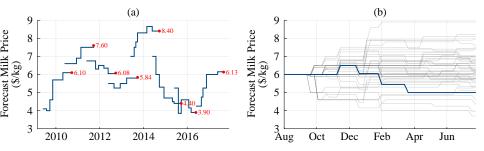


- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - We can *forecast* the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.
- But, a wet year had left paddocks damaged.
- 30 years of experience said: we can't have a bad Summer, Autumn, Winter, AND Spring right?


- A high milk price was forecast.
 - Farmers don't get paid for milk on delivery
 - ► After each year, they are back-paid an *end-of-season* milk price
 - We can *forecast* the end-of-season price during the year
 - But with high uncertainty
- So the farmer kept a high number of cows,
- and they had plenty of feed so they didn't buy more.
- But, a wet year had left paddocks damaged.
- 30 years of experience said: we can't have a bad Summer, Autumn, Winter, AND Spring right?
- Farm consultant's advice: "don't blink"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A


ъ

・ロト ・回ト ・ヨト

э

æ

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

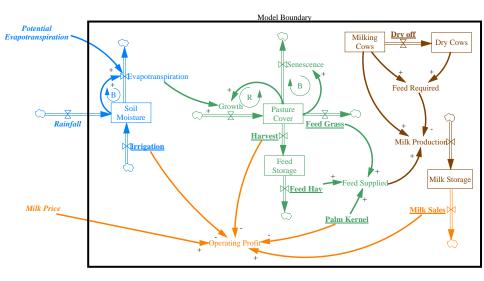
1. There are five state variables:

- 1.1 the soil moisture;
- 1.2 the pasture cover;
- $1.3\,$ the quantity of feed in storage;
- $1.4\;$ the number of cows milking; and
- $1.5\,$ the quantity of milk produced.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

1. There are five state variables:

- 1.1 the soil moisture;
- 1.2 the pasture cover;
- $1.3\,$ the quantity of feed in storage;
- $1.4\,$ the number of cows milking; and
- $1.5\,$ the quantity of milk produced.
- 2. There are three control variables:
 - 2.1 the quantity of grass to feed;
 - 2.2 the quantity of palm kernel to feed; and
 - 2.3 the number of cows to *dry-off*.

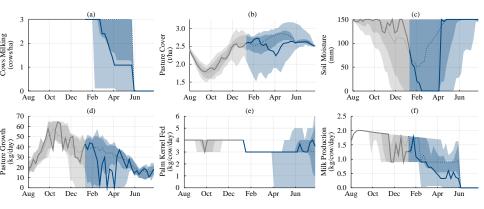


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

1. There are five state variables:

- 1.1 the soil moisture;
- 1.2 the pasture cover;
- 1.3 the quantity of feed in storage;
- 1.4 the number of cows milking; and
- $1.5\,$ the quantity of milk produced.
- 2. There are three control variables:
 - 2.1 the quantity of grass to feed;
 - 2.2 the quantity of palm kernel to feed; and
 - 2.3 the number of cows to *dry-off*.
- 3. There are three random noise terms:
 - 3.1 the quantity of rainfall;
 - 3.2 the quantity of evapotranspiration; and
 - 3.3 a forecast milk price.

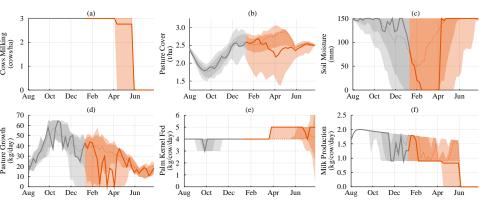
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Now we're going to look at some results.

- 1. **BLUE** trajectories are **LOW** milk price years
- 2. ORANGE trajectories are HIGH milk price years

POWDER - Low Price Season



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

POWDER - High Price Season

(□ > 〈母 > 〈母 > 〈臣 > 」 臣 … のへで

1. Farmers get paid the *end-of-season* milk price;

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1. Farmers get paid the end-of-season milk price;
- 2. At any point in time, the *forward* milk price trades at the conditional expectation of the *end-of-season* milk price:

$$p_t^f = \mathbb{E}\left[p_{53} \mid p_t\right]$$

NZX Futures

(i) www.nzxfutures.com/dairy/quotes/mkp?locale=en

NEW ZEALAND'S EXCHANGE Dairy Derivatives										
Quotes Contract specifications Learn more Useful res	ources Market info Global Dairy Tra	ade Access the market								
WMP FUTURES WMP OPTIONS SMP FUTURES SMP OPTI	ONS AMF FUTURES BTR FUTURES	MKP FUTURES MKP OPTIONS								

Market is delayed by 20 minutes

Trade Date: 2018/06/19 What this report means

<u>中文</u>

Contract Code	Contract Month	Bid Volume	Bid	Offer	Offer Volume	Last	Change	Prior Settle	Open	High	Low	Volume Traded	Updated	Prior Day Open Interest
MKPFU18	SEP 18	3	6.75					6.75					2018/06/19 00:00:00	5115
MKPFU19	SEP 19	10	6.84	6.86	5	6.85	0.00	6.85	6.85	6.85	6.85	10	2018/06/19 12:08:22	3100
MKPFU20	SEP 20	-		6.85	10		-	6.15		-		-	2018/06/19 00:00:00	-

For further information call +64 (9) 309 3672 or email dairyfutures@nzx.com

For trade related enquiries please contact NZX Market Surveillance +64 (4) 495 2829.

NZX Futures

i www.nzxfutures.com/dairy/quotes/mkp?locale=en

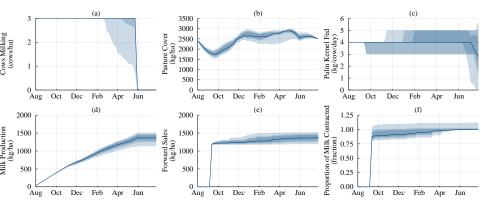
NZX Dairy Derivatives			
Quotes Contract specifications Learn more	Useful resources Market info	Global Dairy Trade Acces	s the market
WMP FUTURES WMP OPTIONS SMP FUTURES	SMP OPTIONS AMF FUTURES	BTR FUTURES MKP FUTUR	ES MKP OPTIONS

Market is delayed by 20 minutes

Trade Date: 2018/06/19 What this report means

... ♥☆

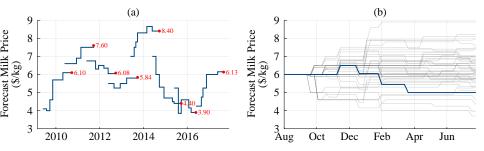
中文


Contract Code	Contract Month	Bid Volume	Bid	Offer	Offer Volume	Last	Change	Prior Settle	Open	High	Low	Volume Traded	Updated	Prior Day Open Interest
MKPFU18	SEP 18	3	6.75				-	6.75		-	-		2018/06/19 00:00:00	5115
MKPFU19	SEP 19	10	6.84	6.86	5	6.85	0.00	6.85	6.85	6.85	6.85	10	2018/06/19 12:08:22	3100
MKPFU20	SEP 20	-		6.85	10		-	6.15		-		-	2018/06/19 00:00:00	-

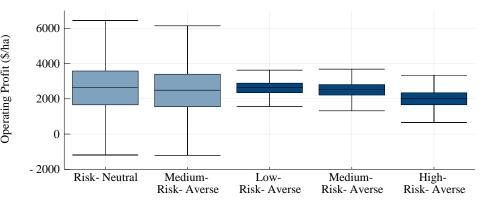
For further information call +64 (9) 309 3672 or email dairyfutures@nzx.com

For trade related enquiries please contact NZX Market Surveillance +64 (4) 495 2829.

5115 contracts = 30 million kilograms = 2% of the underlying


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三世 ● ○○○

・ロト ・回ト ・ヨト


э

æ

POWDER

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

[There is] the need for considerable investment in adaptation and mitigation actions to prevent the impacts of climate change from slowing progress in eradicating global hunger and under-nutrition. [....] Building agricultural resilience, or 'climate-smart agriculture,' through improvements in technology and management systems is a key part of this.

Wheeler et al., (2013). Climate Change Impacts on Global Food Security. Science, 341:6145

Open Questions

This talk is not just about cows.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

This talk is not just about cows.

1. Swap cows for sheep

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

This talk is not just about cows.

- 1. Swap cows for sheep
- 2. Or grass for coffee

This talk is not just about cows.

- 1. Swap cows for sheep
- 2. Or grass for coffee
- 3. We can replicate this for many things with weather and price uncertainty.

1. How do we farm with a changing climate? Easy to do in SDDP, change the probability distribution of weather.

- 1. How do we farm with a changing climate? Easy to do in SDDP, change the probability distribution of weather.
- 2. How do we farm with the environment? Introduce emissions constraint/price.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. How do we farm with a changing climate? Easy to do in SDDP, change the probability distribution of weather.
- 2. How do we farm with the environment? Introduce emissions constraint/price.
- Farming is a multi-year endeavour We need to work on infinite horizon SDDP.

- 1. How do we farm with a changing climate? Easy to do in SDDP, change the probability distribution of weather.
- 2. How do we farm with the environment? Introduce emissions constraint/price.
- 3. Farming is a multi-year endeavour We need to work on infinite horizon SDDP.
- 4. Weather is not stagewise-independent
 - Integrate Hidden Markov Models into SDDP

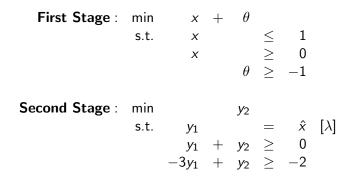
- 1. How do we farm with a changing climate? Easy to do in SDDP, change the probability distribution of weather.
- 2. How do we farm with the environment? Introduce emissions constraint/price.
- Farming is a multi-year endeavour We need to work on infinite horizon SDDP.
- 4. Weather is not stagewise-independent
 - Integrate Hidden Markov Models into SDDP
 - This feels a lot like price interpolation

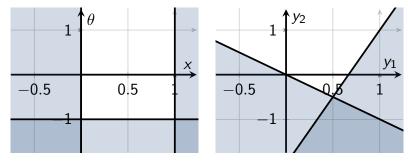
Outline

Degeneracy

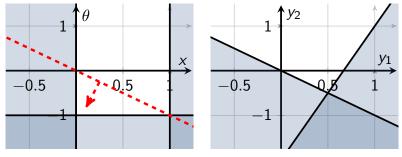
◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ● ���

・ロト ・聞ト ・ヨト ・ヨト


€ 990



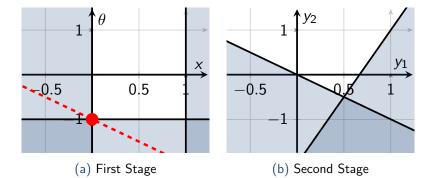
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

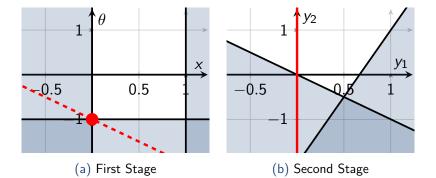


(a) First Stage

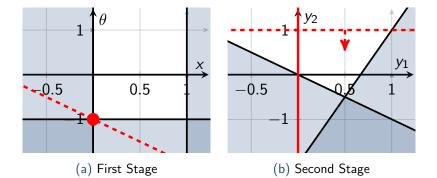
(b) Second Stage

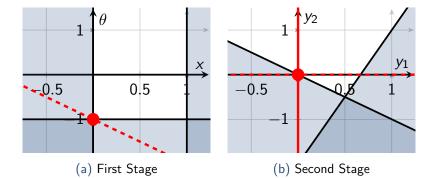
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

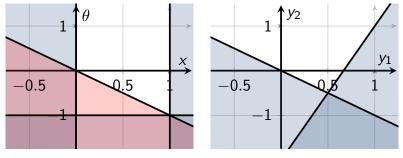


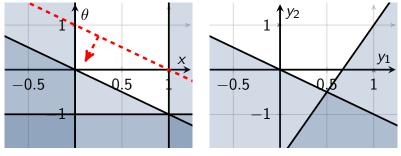

(a) First Stage

(b) Second Stage



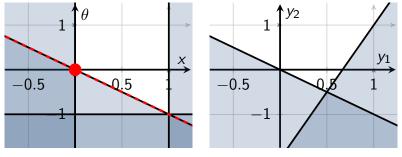






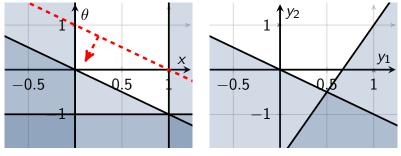
(a) First Stage

(b) Second Stage



(a) First Stage

(b) Second Stage



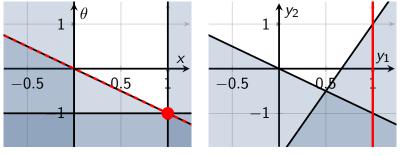
(a) First Stage

(b) Second Stage



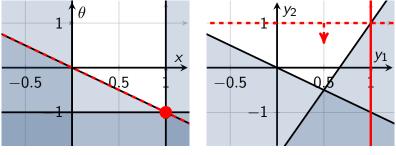
(a) First Stage

(b) Second Stage



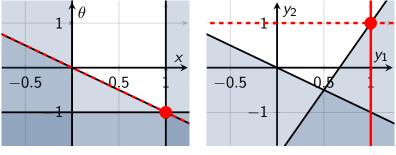
(a) First Stage

(b) Second Stage



(a) First Stage

(b) Second Stage



(a) First Stage

(b) Second Stage

(a) First Stage

(b) Second Stage

Implication for SDDP

When we simulate an "optimal" policy, we may obtain a sequence of sub-optimal controls, even in a converged, deterministic model.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1. Dual stabilization for SDDP If there are many feasible duals, how do we chose the best?

- 1. Dual stabilization for SDDP If there are many feasible duals, how do we chose the best?
- 2. Dual degeneracy Implement a lexicographic simplex method

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1. Dual stabilization for SDDP If there are many feasible duals, how do we chose the best?
- 2. Dual degeneracy Implement a lexicographic simplex method
- 3. Policy variability

- 1. Dual stabilization for SDDP If there are many feasible duals, how do we chose the best?
- 2. Dual degeneracy Implement a lexicographic simplex method
- 3. Policy variability
 - A policy is a random variable

- 1. Dual stabilization for SDDP If there are many feasible duals, how do we chose the best?
- 2. Dual degeneracy Implement a lexicographic simplex method
- 3. Policy variability
 - A policy is a random variable
 - What is the variability between policies created using identical parameters (but different random numbers)?

- 1. Dual stabilization for SDDP If there are many feasible duals, how do we chose the best?
- 2. Dual degeneracy Implement a lexicographic simplex method
- 3. Policy variability
 - A policy is a random variable
 - What is the variability between policies created using identical parameters (but different random numbers)?
 - Solve, then simulate on the same XXX number of simulations

- 1. Dual stabilization for SDDP If there are many feasible duals, how do we chose the best?
- 2. Dual degeneracy Implement a lexicographic simplex method
- 3. Policy variability
 - A policy is a random variable
 - What is the variability between policies created using identical parameters (but different random numbers)?
 - Solve, then simulate on the same XXX number of simulations
 - How does this change as the number of iterations increases?
- 4. Variability with risk
 - How does the policy change with different risk measures?

- 1. Dual stabilization for SDDP If there are many feasible duals, how do we chose the best?
- 2. Dual degeneracy Implement a lexicographic simplex method
- 3. Policy variability
 - A policy is a random variable
 - What is the variability between policies created using identical parameters (but different random numbers)?
 - Solve, then simulate on the same XXX number of simulations
 - How does this change as the number of iterations increases?
- 4. Variability with risk
 - How does the policy change with different risk measures?
 - Solve, then simulate on the same XXX number of simulations

