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Motivation
SDDP is great. But ...

I want to include a price process like:

pt+1 = λpt + (1− λ)µ+ εt .
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An Example
The widget producer

I A company produces widgets

I Production is uncertain

I They sell on a spot-market

I The spot-price is multiplicative auto-regressive



An Example
The widget producer

Vt (xt , pt , ωt) = min
xt+1,ut

−pt+1 × ut + Vt+1(xt+1, pt+1)

s.t. xt+1 = xt − ut + ωw
t

log(pt+1) = log(pt) + ωp
t

ut ∈ [0, 100]
xt+1 ∈ [0, 350]
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An Example
The widget producer

Requirements:

1. The price process evolves independently

2. The price transition is linear

3. The price appears as a concave function in objective



Outline

Motivation

An Example

The Static Interpolation Method

The Dynamic Interpolation Method

Issues



The Static Interpolation Method

x
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(x
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Figure: Piecewise linear interpolation of a one-dimensional function.



The Static Interpolation Method

LIP: f (x̂) = max
γ

N∑
i=1

γi f (x̄i )

s.t.
N∑
i=1

γi = 1

N∑
i=1

γi x̄i = x̂

γi ≥ 0, i ∈ {1, 2, . . . ,N}.



The Static Interpolation Method

Each cost-to-go variable is a “rib”

xt+1yt+1

V t
+
1



The Static Interpolation Method
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The Static Interpolation Method

Vt (xt , yt , ωt) = min
xt+1,ut ,yt+1,θ

max
γ

−eyt+1 × ut +
∑

r∈Rt

γrθt,r

s.t. xt+1 = xt − ut + ωw
t

yt+1 = yt + ωp
t

ut ∈ [0, 100]
xt+1 ∈ [0, 350]∑
r∈Rt

γr ŷr = yt+1∑
r∈Rt

γr = 1

γr ≥ 0, ∀r ∈ Rt

θt,r ≥ αk
t,r + βkt,rxt+1, ∀r , k



The Static Interpolation Method

SP-StaticKt (xt , yt , ωt):
Calculate yt+1 = yt + ωp

t , compute γ, fix as constants, then solve:

Vt (xt , yt , ωt) = min
xt+1,ut ,θ

−eyt+1 × ut +
∑

r∈Rt

γrθt,r

s.t. xt+1 = xt − ut + ωt

ut ∈ [0, 100]
xt+1 ∈ [0, 350]
θt,r ≥ αk

t,r + βkt,rxt+1, ∀r , k .



The Static Interpolation Method

What changes?

1. The two-step solve of each subproblem.

2. On the forward pass, we carry xt+1 and yt+1 to the next stage.

3. On the backward pass, we add a cut for every rib in every
stage.
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The Dynamic Interpolation Method

Vt (xt , yt , ωt) = min
xt+1,ut ,yt+1,θ

max
γ

−eyt+1 × ut +
∑

r∈Rt

γrθt,r

s.t. xt+1 = xt − ut + ωw
t

yt+1 = yt + ωp
t

ut ∈ [0, 100]
xt+1 ∈ [0, 350]∑
r∈Rt

γr ŷr = yt+1∑
r∈Rt

γr = 1

γr ≥ 0, ∀r ∈ Rt

θt,r ≥ αk
t,r + βkt,rxt+1, ∀r , k



The Dynamic Interpolation Method

P : max
γ

K∑
k=1

γkθt,k

s.t.
K∑

k=1

γk ŷ
k = yt+1 [µ]

K∑
k=1

γk = 1 [ϕ]

γk ≥ 0 ∀k ∈ {1, . . . ,K},

D : min
µ,ϕ

µ>yt+1 + ϕ

s.t. µ>ŷk + ϕ ≥ θt,k , k ∈ {1, . . . ,K},



The Dynamic Interpolation Method
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Figure: Geometric Interpretation.



The Dynamic Interpolation Method

SP-DynamicKt (xt , yt , ωt) :
Calculate yt+1 = yt + ωp

t and set as constant, then solve:

Vt (xt , yt , ωt) = min
xt+1,ut , µt ,ϕt

−eyt+1 × ut + µtyt+1 + ϕt

s.t. xt+1 = xt − ut + ωt

ut ∈ [0, 100]
xt+1 ∈ [0, 350]
µty

k
t+1 + ϕt ≥ αk

t + βkt xt+1 ∀k .

Saddle Cut

µty
k
t+1 + ϕt ≥ αk

t + βkt xt+1
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The Dynamic Interpolation Method

What changes?

1. The two-step solve of each subproblem.

2. On the forward pass, we carry xt+1 and yt+1 to the next stage.

3. On the backward pass, we add a saddle-cut instead of a
normal cut.
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Issues – Static Interpolation

Pros

I Good coverage over the state-space

I Can use cut selection etc.

Cons

I How many ribs?

I Where should I put them?

I Low-dimensional problems
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I Multi-dimensional price process
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I No cut selection (yet)
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“Temporal Drivers”
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“Temporal Drivers”
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Summary

Requirements:

1. The price process evolves independently;

2. The price transition is linear; and

3. The price appears as a concave function in objective.

Short-term hydrothermal scheduling with integrated contracting is
now do-able!
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Addendum

1. I’m interested in a file-format for Stochastic Programming;

2. Discrete time;

3. Finite discrete noise realizations;

4. Each subproblem stored as an LP/MPS/NL file;

5. Additional information to encode the noise parameters

6. and to describe the linkages between subproblems.



Questions

A link to our paper: http://www.optimization-online.org/

DB_HTML/2018/02/6454.html

Thesis (preprint): https://odow.github.io/SDDP.jl/latest/

assets/dowson_thesis.pdf

Contact me: o.dowson@auckland.ac.nz

http://www.optimization-online.org/DB_HTML/2018/02/6454.html
http://www.optimization-online.org/DB_HTML/2018/02/6454.html
https://odow.github.io/SDDP.jl/latest/assets/dowson_thesis.pdf
https://odow.github.io/SDDP.jl/latest/assets/dowson_thesis.pdf
o.dowson@auckland.ac.nz
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