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SDDP. j1

What is it?
» A generic SDDP library in the Julia language

v

Built upon JuMP = nice syntax

v

Similar performance to C+4 implementation
Some cool features:

1. User-extensible risk measures
2. User-extensible cut selection heuristics

Google "SDDP.jl github”

v

v
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Success story: the paper of Philpott, de Matos, Kapelevich (2018)
used SDDP. j1 to implement a DRO version of SDDP in < 50 lines

of code.
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Tutorial Eleven: distributionally robust SDDP

In Tutorial Five: risk, we saw how risk measures can be used within our model. In this tutorial we will learn how
robust optimization approach to SDDP in SDDP. j1.

Distributionally robust optimization (DRO) is a i for optimization under inty. In our

setup, DRO s equivalent to a coherent risk measure, and we can apply DRO by using the risk_measure
keyword we saw previously.

A little motivation on the concept

When we build a policy using SDDP; i When

or policy, the real i inthe way our uncertainty.
For example, the i from i i that inflows are

i However, i i likely to exhibit correlation between

stages. Furthermore, we may wish tohhold out aset o historical inflow sequences other than those included
the policy, the per the policy based on its performance in the held
out set. The held out set may are Witha

distributionally robust approach, we avoid assuming an explicit model on the probabilties of the scenarios we
consider. Instead, each time we come to add a cut, we assume that i noise

are the worst case probabilities possible (with respect to our objective) within some ambiguity set.
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Degeneracy

Implication for SDDP

When we simulate an “optimal” policy, we may obtain a sequence
of sub-optimal controls, even in a converged, deterministic model.



Numerical Issues

Ll A

There might be a bug in SDDP. j1

There might be a bug in your code

There might be bugs in JuMP or Julia

We have found bugs in Gurobi. Wrong solutions to simple
LP’'s

Clp will willingly provide numerically incorrect solutions
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Numerical Issues

Implication for SDDP

How do we know a solution is correct? It is hard to validate the
solution of a multistage stochastic optimisation problem.
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A crisis of reproducibility

SDDP is really cool, but you hear the following all the time:

1. | wrote a (private) implementation in XXX language

2. It is hard-coded to solve my favourite (energy-related)
problem XXX

3. The standard algorithm is too slow, so | made it XXX times
faster by implementing MyNewPublished Technique ™

4. Everything worked beautifully and | got a nice answer.
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A crisis of reproducibility

1. We don't share code
(so how do | know your implementation is correct?)
2. We can’t share models
(so | can't test my method on your problem)
3. We use the same words with different meanings
(so | can't easily understand your paper and re-implement)
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A crisis of reproducibility

1. We don't share code
(so how do | know your implementation is correct?)
2. We can’t share models
(so | can't test my method on your problem)
3. We use the same words with different meanings
(so | can't easily understand your paper and re-implement)

How do we know if MyNewPublished Technique™ is an
improvement?
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A proposal

> Let’s pick a subset of problems, large enough to be useful,
small enough to standardise

» Agree on a common notation, terminology, and model
formulation

» Develop a file-format
> Develop a set of open-source solvers that can read the format

» Develop a set of test problems
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A proposal

> Let’s pick a subset of problems, large enough to be useful,
small enough to standardise

» Agree on a common notation, terminology, and model
formulation

» Develop a file-format
> Develop a set of open-source solvers that can read the format
» Develop a set of test problems

» If MyNewPublishedTechnique™ can solve the test problems
faster it is an improvement.



A proposal
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Questions?
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Nested Risk Measures

6000 |- —
4000 |-
0%
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Risk- Averse  Risk- Averse  Risk- Averse  Risk- Averse
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Nested Risk Measures

Implication for SDDP

Nested risk-measures don't match our intuition, and they don't
produce consistent results.
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