MOO: THE MILK OUTPUT OPTIMISER

A management tool for New Zealand dairy farmers or How to milk your cash cow

Oscar Dowson October 1, 2015

University of Auckland

WHY DO I CARE?

_

I never saw a Purple Cow,

I never hope to see one,

But I can tell you, anyhow,

I'd rather see than be one!

- Gelett Burgess

.eet € eest Park erest Park

3

Katikati

Matakana Island

> MOUNT MAUNGANUI

Tauranga

PAPAMO

Pap

WHY SHOULD YOU CARE?

20.5b litres of milk

20.5b

litres of milk

Or fill 8200 swimming pools

exported

export goods by value

export goods by value

of global dairy exports

New Zealand Germany

New ZealandGermanyProduction (109L)20.530

New ZealandGermanyProduction (10°L)20.530Cows (10°)54

New ZealandGermanyProduction (10°L)20.530Cows (10°)54Litres/Cow4,1007,500

	New Zealand	Germany
Production (10 ⁹ L)	20.5	30
Cows (10 ⁶)	5	4
Litres/Cow	4,100	7,500
% Exported	95	50

	New Zealand	Germany
Production (10 ⁹ L)	20.5	30
Cows (10 ⁶)	5	4
Litres/Cow	4,100	7,500
% Exported	95	50

1 German cow produces the same as 1.8 New Zealand cows!

WHY?

Supplementation More food = more milk

Supplementation More food = more milk

Genetics Biological efficiency = more milk

Supplementation More food = more milk

Genetics Biological efficiency = more milk

Environment Better housing = more milk

"RESEARCH" IN DENMARK

"RESEARCH" IN SWITZERLAND

A MATHEMATICAL COW...

E-COW

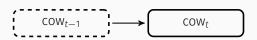
Evolved over a number of years SIMCOW (Kristensen et al., 1997), MOOSIM (Bryant, 2006)

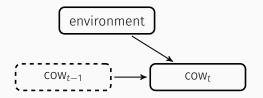
Evolved over a number of years

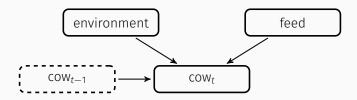
SIMCOW (Kristensen et al., 1997), MOOSIM (Bryant, 2006)

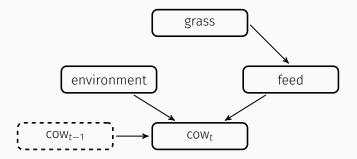
Baudracco et al., 2011

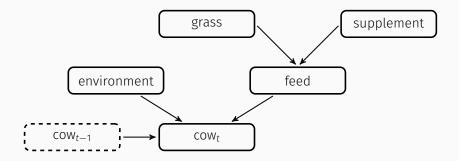
Evolved over a number of years SIMCOW (Kristensen et al., 1997), MOOSIM (Bryant, 2006)

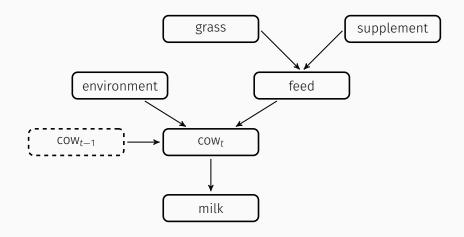

e-Cow

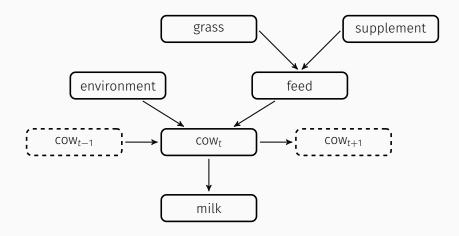

Baudracco et al., 2011

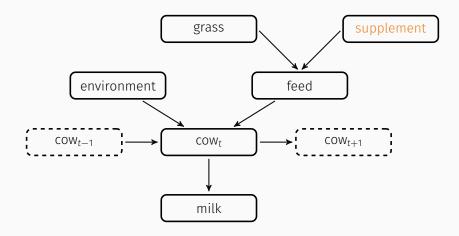

Sensitive to Genetic and Environmental interactions


A MATHEMATICAL COW


COWt







THE BASIC MODEL

$$max \qquad \sum_{t=1}^{52} a_t \times m_t - b_t \times s_t \\ x_{t+1} = f(x_t, s_t) \qquad \forall t = 1, 2...52 \\ m_t = g(x_t, s_t) \qquad \forall t = 1, 2...52 \\ x_1 = k_1 \\ x_{53} \ge k_2$$

$$max \qquad \sum_{t=1}^{52} a_t \times m_t - b_t \times s_t \\ x_{t+1} = f(x_t, s_t) \qquad \forall t = 1, 2...52 \\ m_t = g(x_t, s_t) \qquad \forall t = 1, 2...52 \\ x_1 = k_1 \\ x_{53} \ge k_2$$

$$max \qquad \sum_{t=1}^{52} a_t \times m_t - b_t \times s_t$$

$$x_{t+1} = f(x_t, s_t) \qquad \forall t = 1, 2...52$$

$$m_t = g(x_t, s_t) \qquad \forall t = 1, 2...52$$

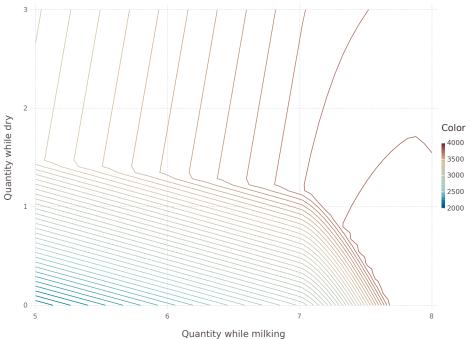
$$x_1 = k_1$$

$$x_{53} \ge k_2$$

$$max \qquad \sum_{t=1}^{52} a_t \times m_t - b_t \times s_t \\ x_{t+1} = f(x_t, s_t) \qquad \forall t = 1, 2...52 \\ m_t = g(x_t, s_t) \qquad \forall t = 1, 2...52 \\ x_1 = k_1 \\ x_{53} \ge k_2$$

$$max \qquad \sum_{t=1}^{52} a_t \times m_t - b_t \times s_t$$

$$x_{t+1} = f(x_t, s_t) \qquad \forall t = 1, 2...52$$


$$m_t = g(x_t, s_t) \qquad \forall t = 1, 2...52$$

$$x_1 = k_1$$

$$x_{53} \ge k_2$$

$$max \qquad \sum_{t=1}^{52} a_t \times m_t - b_t \times s_t \\ x_{t+1} = f(x_t, s_t) \qquad \forall t = 1, 2...52 \\ m_t = g(x_t, s_t) \qquad \forall t = 1, 2...52 \\ x_1 = k_1 \\ x_{53} \ge k_2$$

A NON-LINEAR APPROACH

A DYNAMIC PROGRAMMING AP-PROACH

1. Every state everywhere

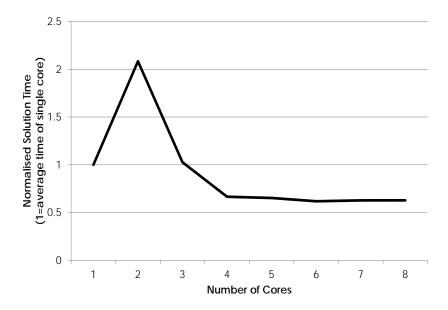
- 1. Every state everywhere
- 2. Global optimum

- 1. Every state everywhere
- 2. Global optimum

Cons

- 1. Every state everywhere
- 2. Global optimum

Cons


1. Slow (maybe)

- 1. Every state everywhere
- 2. Global optimum

Cons

- 1. Slow (maybe)
- 2. By discretising the state space we introduce interpolation errors

SLOW (MAYBE)?

A TWO-PHASE APPROACH

So we have

So we have

1. A fast non-convex NLP

So we have

- 1. A fast non-convex NLP
- 2. A DP that solves an approximation

So we have

- 1. A fast non-convex NLP
- 2. A DP that solves an approximation

Proposed Solution Method

So we have

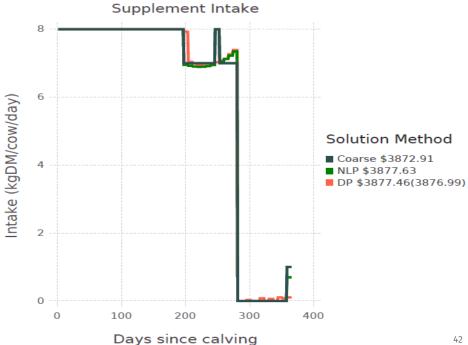
- 1. A fast non-convex NLP
- 2. A DP that solves an approximation

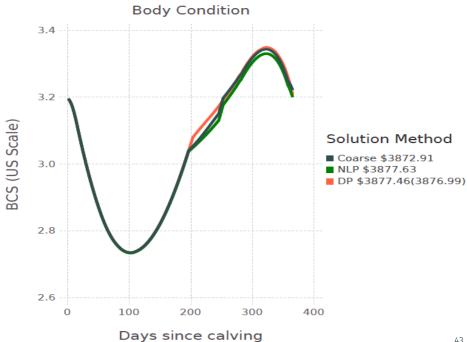
Proposed Solution Method

1. Solve the DP with a fine discretisation

So we have

- 1. A fast non-convex NLP
- 2. A DP that solves an approximation


Proposed Solution Method


- 1. Solve the DP with a fine discretisation
- 2. When you wish to get a policy, use the optimal DP solution as the starting point for the NLP.

BUT WAIT, THERES MORE

Will the policy actually be implemented?

RESULTS

IS IT WORTH DOING?

DAIRYANALYTICS.CO.NZ

A web-interface for our models.

Written in pure Julia

Hosted on AWS

Simple Non-linear optimiser

Cows		Results
Stocking Rate (Cows/Ha)	0	Total Profit: \$2568.95 per cow per year
Body Condition Score (BCS) at Calving (NZ Scale)	6	That is \$400.18 more per cow per year than feeding no supplement
Liveweight at Calving (kg)	6	Body Condition Score
Calving Date	01/08/2015	
Target Body Condition Score	6	8 6
Economi	cs	Bedy Carolibra Score
Mik Price (\$/kgMS)	4.5	
Supplement Price (\$/Tonne)	350	
Cost of BCS target (\$/unit)	100	IBI a Aug See Oct Nev Dec Jan Feb Mar Aar May Jun Jul Aug
Pasture	•	User Policy — No Supplementation This plot shows the predicted BCS of the animal over the season.
Energy Content (MJ/kgDM) Neutral Fibre (%)) 🛛 Digestibility (%)	Previous
10.3 🖹 44	70	0ptimise
Suppleme	ent	
Energy Content (MJ/kgDM) Wastage (%)	Total Available (kgDM/Cow/Year	
10.3 🗵 10	图 730	6

WHERE WE ARE HEADED

STOCHASTICITY

The weather isn't deterministic

The weather isn't deterministic Neither is the milk price The weather isn't deterministic Neither is the milk price Or the spot price of feed The weather isn't deterministic Neither is the milk price Or the spot price of feed Risk?

CONTRACTS

A contract market exists for buying supplement

A contract market exists for buying supplement Storage constraints, Capital constraints, Competitors

A contract market exists for buying supplement Storage constraints, Capital constraints, Competitors

Question

A contract market exists for buying supplement Storage constraints, Capital constraints, Competitors

Question

How much supplement should I order at the start of the year?

THE "DRY OFF" PROBLEM

You have a cow

You have a cow It begins in a milking state You have a cow It begins in a milking state You can turn it off once You have a cow It begins in a milking state You can turn it off once Usually based on food quantity, cow condition, farmer tiredness You have a cow It begins in a milking state You can turn it off once Usually based on food quantity, cow condition, farmer tiredness

Question

You have a cow It begins in a milking state You can turn it off once Usually based on food quantity, cow condition, farmer tiredness

Question

When should the farmer dry off his herd?

THE LAND USE PROBLEM

You have a farm (area, location, terrain)

You have a farm (area, location, terrain) It has various paddocks (area, slope, soil type)

You have a farm (area, location, terrain) It has various paddocks (area, slope, soil type) You can plant different crops (grass, maize) You have a farm (area, location, terrain) It has various paddocks (area, slope, soil type) You can plant different crops (grass, maize) Nitrogen leeches into rivers/lakes = BAD You have a farm (area, location, terrain) It has various paddocks (area, slope, soil type) You can plant different crops (grass, maize) Nitrogen leeches into rivers/lakes = BAD

Question

You have a farm (area, location, terrain) It has various paddocks (area, slope, soil type) You can plant different crops (grass, maize) Nitrogen leeches into rivers/lakes = BAD

Question

How do you use your land to maximise milking profit whilst minimizing Nitrogen leeching?

QUESTIONS?